Sublethal Toxicity Endpoints of Heavy Metals to the Nematode Caenorhabditis elegans
نویسندگان
چکیده
Caenorhabditis elegans, a free-living nematode, is commonly used as a model organism in ecotoxicological studies. The current literatures have provided useful insight into the relative sensitivity of several endpoints, but few direct comparisons of multiple endpoints under a common set of experimental conditions. The objective of this study was to determine appropriate sublethal endpoints to develop an ecotoxicity screening and monitoring system. C. elegans was applied to explore the sublethal toxicity of four heavy metals (copper, zinc, cadmium and chromium). Two physiological endpoints (growth and reproduction), three behavioral endpoints (head thrash frequency, body bend frequency and feeding) and two enzymatic endpoints (acetylcholine esterase [AChE] and superoxide dismutase [SOD]) were selected for the assessment of heavy metal toxicity. The squared correlation coefficients (R2) between the responses observed and fitted by Logit function were higher than 0.90 and the RMSE were lower than 0.10, indicating a good significance statistically. There was no significant difference among the half effect concentration (EC50) endpoints in physiological and behavioral effects of the four heavy metals, indicating similar sensitivity of physiological and behavioral effects. AChE enzyme was more sensitive to copper, zinc, and cadmium than to other physiological and behavioral effects, and SOD enzyme was most sensitive to chromium. The EC50 of copper, zinc, and cadmium, to the AChE enzyme in the nematodes were 0.68 mg/L, 2.76 mg/L, and 0.92 mg/L respectively and the EC50 of chromium to the SOD enzyme in the nematode was 1.58 mg/L. The results of this study showed that there was a good concentration-response relationship between all four heavy metals and the sublethal toxicity effects to C. elegans. Considering these sublethal endpoints in terms of simplicity, accuracy, repeatability and costs of the experiments, feeding is the relatively ideal sublethal toxicity endpoint of heavy metals to C. elegans.
منابع مشابه
RNA/DNA ratios as a sublethal endpoint for large-scale toxicity tests with the nematode Caenorhabditis elegans.
Caenorhabditis elegans increasingly is attractive as a toxicity test organism, particularly as a model system to study mechanisms of toxicity at a molecular level and the way that these lead to whole organism and population level effects. Inhibitions of growth, reproduction, movement, and feeding rate all have been proposed as sublethal toxicity endpoints. These endpoints are more sensitive tha...
متن کاملToxicity ranking of heavy metals with screening method using adult Caenorhabditis elegans and propidium iodide replicates toxicity ranking in rat.
The utility of any model system for toxicity screening depends on the level of correlation between test responses and toxic reactions in humans. Assays in Caenorhabditis elegans can be fast and inexpensive, however few studies have been done comparing toxic responses in this easily cultured nematode with data on mammalian toxicity. Here we report that a screening assay for acute toxicity, using...
متن کاملCopper Oxide Nanoparticles Impact Several Toxicological Endpoints and Cause Neurodegeneration in Caenorhabditis elegans
Engineered nanoparticles are becoming increasingly incorporated into technology and consumer products. In 2014, over 300 tons of copper oxide nanoparticles were manufactured in the United States. The increased production of nanoparticles raises concerns regarding the potential introduction into the environment or human exposure. Copper oxide nanoparticles commonly release copper ions into solut...
متن کاملLongevity and heavy metal resistance in daf-2 and age-1 long-lived mutants of Caenorhabditis elegans.
In the nematode Caenorhabditis elegans, dauer formation, stress resistance, and longevity are determined in part by DAF-2 (insulin receptor-like protein), AGE-1 (phosphatidylinositol-3-OH kinase catalytic subunit), and DAF-16 (forkhead transcription factor). Mutations in daf-2 and age-1 result in increased resistance to heat, oxidants, and UV. We have discovered that daf-2 and age-1 mutations r...
متن کاملA new pathway for heavy metal detoxification in animals. Phytochelatin synthase is required for cadmium tolerance in Caenorhabditis elegans.
Increasing emissions of heavy metals such as cadmium, mercury, and arsenic into the environment pose an acute problem for all organisms. Considerations of the biochemical basis of heavy metal detoxification in animals have focused exclusively on two classes of peptides, the thiol tripeptide, glutathione (GSH, gamma-Glu-Cys-Gly), and a diverse family of cysteine-rich low molecular weight protein...
متن کامل